

S.E. Semester –III

Choice-Based Credit Grading Scheme with Holistic and Multidisciplinary Education (CBCGS-HME 2023)

B.E.	B.E. (Electronics and Telecommunication Engineering)							SI	SEM: III		
	Course Name: Applied Mathematics III							Course Cod	le: BSC-ETC	301	
	С	ontact Ho	urs Per V	Veek: 04				Cr	edits: 04		
Teach	ing Schem	e (Progra	m Specifi	ic)	H	Exam	ination S	cheme (Formati	ve/ Summativ	/e)	
Modes of	f Teaching	/ Learnin	g / Weigl	ntage	Ν	Mode	s of Conti	inuous Assessm	ent / Evaluati	on	
	Hours Per Week				IA (40		Theory (60)	Practical/Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	ISE	IE	ESE	PR	TW	125	
3	1	-	4	4	20	20	60	-	25		
	ISE: In-Semester Examination - Paper Duration – 1 Hours IE: Innovative Examination ESE: End Semester Examination - Paper Duration - 2 Hours The weightage of marks for continuous evaluation of Term work/ Report: Formative (40%), Timely completion of practical (40%) and Attendance/Learning Attitude (20%) Prerequisite: Mathematics I, Mathematics II .										
Prere	quisite: Math	nematics I, M	lathematics	II.							

Course Objective:

The course intends to familiarize the prospective engineers with techniques in Laplace Transform Fourier Transform, Z- Transform, Wavelet Transform, Fourier series and Linear algebra (Vector Spaces). It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines

Course Outcomes: Upon completion of the course students will be able to:

Module No.	Topics	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy
	Laplace Transform -I		
1	Laplace transform of standard functions, Properties of Laplace Transform- Linearity, First shifting, change of scale, multiplication by t, division by t, derivative and Integral, Laplace transform of periodic functions, Evaluation of integrals by Laplace transform, Laplace Transform of periodic function, Heaviside function, Dirac delta function.	8	L1, L2, L3
	Laplace Transform -II		
2	Finding inverse Laplace transform by First shifting theorem, Partial fractional methods, convolution theorem, inverse Laplace transform by differentiation, solving ordinary differential equations by Laplace Transform method, Solving integral equation and Integral-differential equation.	7	L1, L2, L3
	Fourier Series		

DYZ45-U W	Image: Constraint of the second system Image: Consecond system Image: Constraint of t	SINEERIN f. 1 st July	NG (E&TC) 2022) Estr. 2001
3	Introduction: Orthogonal and Orthonormal set of functions, Introduction of Dirichlet's conditions, Euler's formulae. Fourier Series of Functions: Exponential, trigonometric functions of any period 2L, even and odd functions, half range sine and cosine series. Complex form of Fourier series.	8	L1, L2, L3
4	Fourier Transform Fourier integral representation, Fourier Transform and Inverse Fourier transform of constant and exponential function. First shifting, change of scale, multiplication by t, division by t and its application. Relationship between Fourier and Laplace transform.	7	L1, L2, L3
5	Z – Transform and Wavelet TransformZ-transform: Z-transform of standard functions such as $Z(a^n)$, propertiesof Z-transform, inverse by Partial fraction method, Wavelet transform,types of wavelets, properties of wavelets.	7	L1, L2, L3
6	Linear Algebra: Vector Spaces Vector Space- examples & properties, Subspace, Basis, Dimensions, linear dependence and independence, Linear Transformations (maps), Linear operator, Range and kernel of linear transformation, Matrix of a linear transformation.	8	L1, L2, L3
	Total Hours	45	

Online References:

Sr. No.	Website Name	URL	Modules covered
1	http://nptel.ac.in	https://nptel.ac.in/courses/111108066/8	M6
2	www.swayam.gov.in	https://swayam.gov.in/nd1_noc19_ma20/preview	M1, M2, M4
3	www.edx.org	https://www.edx.org/course/differential- equations-fourier-series-and-partial-differential- equations	M3

S.E. Semester –III

Choice-Based Credit Grading Scheme with Holistic and Multidisciplinary Education (CBCGS-HME 2023)

B.E. (Electronics and Telecommunication Engineering)							SEM: III			
	Course Name: Network and Control Engineering							Course Code	e: ESC-ETC	2301
	Contact Hours Per Week: 05						Credit: 04			
		ne (Prograi				Exa	minatio	n scheme		
Modes of	of Teaching	g / Learning	g / Weight	age			Modes	of Continuous Asse	ssment / Ev	aluation
Hours Per Week			IA	Theory (100)IA (40)Theory (60)		Practical / Oral / Presentation (25)	Term Work (25)	Total		
Theor y	Tutoria l	Practica l	Contact Hours	Credit s	ISE	IE	ESE	PR/OR	TW	150
3	-	2	5	4	20	20	60	25	25	
Prerequ	3 - 2 5 4 20 20 60 25 25 ISE: In-Semester Examination- Paper Duration – 1 Hours IE: Innovative Examination-Paper Duration – 1 Hours IE: Innovative Examination-Paper Duration – 2 Hours The weightage of marks for continuous evaluation of Term work/ Report: Formative (40%), Timely Completion of practical (40%) and Attendance/Learning Attitude (20%) Prerequisite: Basic Electrical Engineering RBT: Revised Bloom's Taxonomy									

Course Objective:

The course aims to make the students analyze circuits using KVL and KCL and develop the ability to solve different equations for a given circuit. Student should characterize a given network using different network parameters, learn stability of the network. The course will be useful for students from major streams of engineering to build foundations of time/frequency analysis of systems as well as the feedback control of such systems.

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
1	Analyze the basic DC circuits using Mesh and Nodal Analysis and theorems with controlled sources	L1, L2, L3, L4
2	Analyze the transient response using classical methods and Laplace Transform approach for RL, RC, and RLC circuit,	L1, L2, L3
3	Analyze the network in terms of all network parameters and functions	L1, L2, L3, L4
4	Define and compare open loop and closed loop system and Find transfer functions for given system using various methods.	L1, L2, L3
5	Predict stability analysis in time domain using Root locus Analysis	L1, L2, L3, L4
6	Predict stability analysis in frequency domain using various criteria.	L1, L2, L3, L4

TCET

DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 4th Cycle Accreditation w.e.f. 1st July 2022) Choice Based Credit Grading System (CBCGS) Under TCET Autonomy

tce

Estd 2001

1 CIRCUIT ANALYSIS AND THEOREMS 08 Introduction to dependentscors and analyze a Network with Mesh, Super mesh, Node and Super Node analysis (DC analysis only), Circuit Analysis techniques: Superposition, Thevenin's, Norton's, Maximum Power transfer theorems. 2 TRANSIENTS IN RC, RL AND RLC CIRCUITS 10 Network equations using classical method for R-L, R-C circuits and Time 10	L1, L2, L3 L1, L2, L3, L4
mesh, Node and Super Node analysis (DC analysis only), Circuit Analysis techniques: Superposition, Thevenin's, Norton's, Maximum Power transfer theorems. 2 TRANSIENTS IN RC, RL AND RLC CIRCUITS 10	
Analysis techniques: Superposition, Thevenin's, Norton's, Maximum Power transfer theorems. 2 TRANSIENTS IN RC, RL AND RLC CIRCUITS 10	
Power transfer theorems. 10 2 TRANSIENTS IN RC, RL AND RLC CIRCUITS 10	
2	
Network equations using classical method for R-L, R-C circuits and Time	L4
Constant, Time domain analysis of R-L-C Circuits: Forced and natural response, effect of damping factor. Solution using second order equation for standard signals, Frequency domain analysis: Frequency- domain representation of R, L, C, applications of Laplace Transform in analyzing electrical circuits	
3 INTRODUCTION TO NETWORK PARAMETERS AND FUNCTIONS 07	L1, L2, L3, L4
Two port parameters: Z, Y, H and Transmission parameters, conditions for reciprocity and symmetry (no derivation expected) Network functions for the one port and two port, Driving point function Poles and zeroes of network functions, Time domain behavior asrelated to the Pole-Zero	
4INTRODUCTION TO CONTROL SYSTEM ANALYSIS04	L1, L2, L3, L4
Definition of system, control, control system, Basic control system components; Feedback principle, Types of control system, Open and closed loop systems, example of control systems. Time response analysis of first and second order control System. Representation of Control System: Signal flow graph, Mason's gain rule.	
	L1, L2, L3, L4
Concept of stability: Introduction to stability, Routh and Hurwitz stability criterion. Root locus Analysis: Root locus concept, general rules for constructing root locus, root locus analysis of control system, concept of design of lag and lead compensator.	
	L1, L2, L3, L4
Frequency domain specification, Relationship between time and frequency domain of system, stability margins specification Bode Plot: Magnitude and phase plot, Method of plotting Bode plot, Stability analysis by using Gain and phase margins on the Bode plots. Polar Plot: Concept of Polar plot, Stability from Polar plot	
Total Hours 45	

TCET DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 4th Cycle Accreditation w.e.f. 1st July 2022) Choice Based Credit Grading System (CBCGS) Under TCET Autonomy

tce

S.No	Title	Authors	Publisher	Edition	Year
		Van, Valkenburg	McGraw Hill	9 th Edition,	
1	Network analysis				2017
2	Circuits and Network	Sudhakar, A., Shyammohan, S. P	McGraw Hill.	4th Edition	2011
3	Control System Engineering	Nagrath J., and Gopal M	New Age International Publishers	5 th Edition	2007
4	Modern Control Engineering	Ogata.K	Prentice Hall of India	5 th Edition	2010

Online References:

S. No.	Website Name	URL	Modules Covered
1	Basic Electric Circuits (TheOnline Education- Swayam)	https://swayam.gov.in/nd1_noc19_ee36/preview	M1, M3,
2	NPTEL	https://nptel.ac.in/courses/108105065/21	M2
3.	SWAYAM	https://onlinecourses.nptel.ac.in/noc20_ee90/pre view	M4 to M6

List of Tutorial:

Practical Number	Type of Experiment	Practical/ Experiment Topic	Hr s	Cognitive levels of attainment as per Bloom's Taxonomy
1.		Verification of Mesh and Nodal Analysis	2	L1, L2, L3, L4
2.		Verification of Thevenin's Theorem	2	L1, L2, L3, L4
3.	Basic	Verification of Superposition Theorem	2	L1, L2, L3, L4
4.	Experiments	Determination of z parameters (dc only) for a network	4	L1, L2, L3
5.		Analyze open loop and closed loop control system using Xcos.	4	L1, L2, L3
6.		To plot graph for current in RLC circuit for different values of damping factor.	2	L1, L2, L3, L4
7.		Determination of transient response of currentin RL and RC circuit with step voltage input and verify time constant		L1, L2, L3,L4
8.	Design Experiments	To study frequency response analysis for Various Transfer Function Using Bode Plot	4	L1, L2, L3, L4, L5, L6
9.		To analysis Root Locus for given open loop transfer function	4	L1,L2,L3,L4

	C DEPARTMENT	GINEERING .f. 1 [±] July 20	(E&TC) (E	
10.	Advanced Experiments	Analyze second order control System for different types of input signal.	2	L1,L2,L3,L5, L6

Total Hours

30

S.E. Semester –III

Choice Based Credit Grading Scheme with Holistic and Multidisciplinary Education (CBCGS-HME 2023)

B.E. (Electronics and Telecommunication Engineering)							SEM: III			
Course Name: Electronic Device and Circuits						Course Code: PCC-ETC 301				
Contact 1	Hours Per	Week: 06						Credits: 05		
Teaching	g Scheme (1	Program Sp	pecific)		Exan	ninati	on Sch	eme (Formative ve	/Summative)	
Modes of	f Teaching	/ Learning	/ Weighta	ge	Mod	es of	Contin	uous Assessment/	Evaluation	
Hours Per Week					Theory (100)		Practical/Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	ISE	IE	ESE	PR	TW	150
3	1	2	6	5	20	20	60	25	25	150
		ISE:		er Examin : Innovat		-		ration – 1 Hours on		
ESE: End Semester Examination on - Paper Duration - 2 Hours The weightage of marks for continuous evaluation of Term work/ Report: Formative (40%), Timely completion of practical (40%) and Attendance/Learning Attitude (20%)										
-	completion of practical (40%) and Attendance/Learning Attitude (20%) Prerequisite: Intermediate Science level knowledge of Atomic Structure, Physics and BEE RBT: Revised Bloom's Taxonomy									

Course Objective:

The course intends to impart fundamental knowledge and application of semiconductor devices like P-N junction, BJT and FET. Students will develop the logical and analytical skills needed to design the amplifier circuits using BJT and FET.

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

SN	Course outcomes	Cognitive levels of attainment as per PI
1	Apply knowledge of science to explain the characteristics of semiconductor devices and its application to solve engineering problems.	L1, L2, L3, L4
2	Apply knowledge of science to explain the characteristics, construction and working of BJT. Identify the best stable circuit for BJT amplifiers.	L1, L2, L3, L4
3	Apply knowledge of science to explain the characteristics, construction and working of FET. Identify the best stable circuit for MOSFET amplifiers.	L1, L2, L3, L4
4	Analysis of BJT amplifiers and MOSFET amplifiers	L1, L2, L3, L4
5	Design BJT and MOSFET amplifiers for any gain and bandwidth.	L1, L2, L3, L4, L5, L6
6	Understand, identify, and differentiate various configurations for specific multistage amplifier.	L1, L2, L3, L4

Detailed Syllabus:

Module No.	Topics	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy
	Diodes and their Applications		
1	PN junction diode and its small signal model, Wave shaping Techniques-Clipper and Clamper, Current and Voltage in an Illuminated Junction, Solar Cells, Photodetectors, Light Emitting Diode: Light Emitting materials, Zener Diode characteristics and applications of Zener diode	7	L1, L2
	Bipolar Junction Transistor		
2	Characteristics, construction and working of BJT, DC/AC load line, Q point, Stability, various biasing circuits (Fixed bias and Voltage Divider bias), Emitter bias, Collector to base bias, effect of load and source resistance on CE amplifier.	8	
2	blas, Conector to base blas, effect of foad and source resistance on CE amplifier.		L1, L2, L3, L4
3	Field Effect Transistors		
	Characteristics, construction and working of JFET and MOSFET, biasing circuits of MOS. The Depletion-Type MOSFET, Effect of bypass capacitor on MOS Amplifier.	8	L1, L2, L3, L4
4	Small signal analysis of BJT and MOSFET		
	Small signal analysis of BJT - Small signal model of BJT, BJT as Amplifier, Small signal analysis (Zi, Zo, Av and Ai) of CE amplifier, Effect of bypass capacitor on CE Amplifier Small signal analysis of MOS - Small Signal Operation and Models of MOS,	10	L1, L2, L3,L4
	MOSFET as an Amplifier and as a Switch Single-Stage MOS Amplifier, Effect of bypass capacitor and effect of load and source resistance on CS Amplifier.		
5	Design of Small Signal Amplifiers		
	Design of single stage BJT and MOS amplifier to obtain desired output voltage and gain.	6	L1, L2, L3, L4, L5, L6
	Multistage amplifiers		
6	Apply the knowledge of engineering fundaments to explain Coupling techniques, analyze Cascade amplifiers, Cascode amplifier and Darlington amplifiers	6	L1, L2, L3, L4
	Total Hours		45

Books and References:

SN	Title	Authors	Publisher	Edition	Year
1	Electronic Circuit	D. A. Neamen	Tata McGraw	2 nd Edition	
	Analysis and Design		Hill		2005
2	Electronic Devices and Circuits	R. S. Dudhe and M.Farhan	Synergy Knowledgeware.	1st Edition	2013
3	Electronic Devices and Circuits Theory	Boylestad and Nashelesky	Pearson Education	11th Edition	2013
4	Integrated Electronics: Analog and Digital Circuits and System	Millman Halkias	McGraw Hill.	2nd Edition	2011
5	Electronic Devices and Circuits; An Introduction	A. Mottershead	Prentice Hall	1st Edition	1973

Online References:

S. No.	Website Name	URL	Modules Covered
1	www.udemy.com	ttps://www.udemy.com/introduction-to- semiconductor-diodes-and-transistors/	M1,M2
2	www.edx.org	https://www.edx.org/course/electronic-materials-and- devices-2	M1-M5
3	www.youtube.com	https://youtu.be/dl66XHbfBcg https://www.youtube.com/watch?v=oMdIzj83qd8 https://youtu.be/c7BbukJpVQE https://youtu.be/aUEwtIgR8ag	M1 M4 M3 M3

Suggested List of Practical/ Experiments:

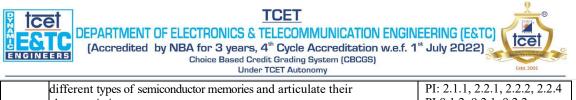
Practical Number	Type of Experiment	Practical/ Experiment Topic	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy
1.		Study Experiment on testing of cable, Power supply and Function generator / DSO	2	L1, L2
2.		V-I Characteristics of Diode	4	L1, L2, L3, L4
3.	Basic Experiments	Application of Diode as Clipper circuit	2	L1, L2, L3, L4
4.		Application of diode as Clamper circuit.	4	L1, L2, L3,
5.		Comparison of different Biasing circuit performance for different transistors	2	L4
6.	Decien Forenciation of	Design and verification of single stage BJT amplifier for given gain and bandwidth through simulation.	2	L1, L2, L3, L4, L5, L6
7.	Design Experiments	Design and verification of single stage MOS amplifier for given gain and bandwidth through simulation	2	L1, L2, L3, L4, L5, L6
8.		AC parameters of BJT amplifier.	2	L1, L2, L3, L4
9.	Advanced Experiments	AC parameters of Cascode amplifier.	2	L1, L2, L3
10.		AC parameters of MOSFET amplifier.	2	L1, L2, L3, L4
11.		Study Project on electronic devices	4	L1, L2, L3, L4
		Total Hours		30

S.E. Semester-III

Choice Based Credit Grading Scheme with Holistic Multidisciplinary Education (CBCGS-HME 2023)

B.E. (El	B.E. (Electronics and Telecommunication					ring)		SEM: III			
Course 1	Name: Dig	gital Logi	c Design			Course Code: PCC-ETC 302			2		
Contact Hours Per Week: 05								Credits: 4			
Teaching Scheme (Program Specific)					Exami	inatio	n Schem	e (Formative /	Summative)		
Modes o	of Teachin	ig / Learn	ing / Wei	ghtage	Mode	s of C	ontinuo	us Assessment	/ Evaluation		
Hours Per Week					Theory (100)		Practical Oral (25)	Term Work (25)	Total		
Theory	Tutorial	Practical	Contact Hours	Credits	ISE	IE	ESE	PR	TW	150	
3		2	5	4	20	20	60	25	25		
IE: Innov ESE: En The weig	vative Exa d Semester ghtage of :	r Examinat	ion - Pape continuo	r Duratio us evalu	on - 2 l I ation	Hours of To	erm wor		ormative (40%),	7imely	
Prerequi		cs and App	olied Matl	nematics							

RBT: Revised Bloom's Taxonomy


Course Objective:

The course intends to develop an understanding of number systems and codes and apply the same concepts for interconversions. The course also aims to develop an understanding of the analysis of logic processes and implementation of logical operations by applying combinational and sequential logic circuits.

Course Outcomes:

Upon completion of the course students will be able to:

Sr. No.	Course Outcomes	Performance Indicators
Sr. 110.	Course Outcomes	
1	Apply mathematical techniques and knowledge to solve given problem related to number system and code interconversion and explain various types of codes	PI: 1.1.1 ,1.3.1, 1.4.1 PI: 9.1.2, 9.2.1, 9.2.2 PI: 10.1.1, 10.1.2, 10.2.2, 10.3.1,10.3.2
2	Apply fundamental engineering concepts to simplify Boolean expressions and design using logic gates.	PI: 1.1.1, 1.3.1, 1.4.1 PI: 2.2.4 PI: 9.1.2, 9.2.1, 9.2.2 PI: 10.1.1, 10.1.2, 10.2.2, 10.3.1,10.3.2
3	Analyze and design combinational circuits using electronics engineering concepts, articulate given problem and apply modern engineering tool to implement combinational circuits.	PI: 1.1.1, 1.3.1, 1.4.1 PI: 2.1.1, 2.2.4, 2.4.3 PI: 3.1.5, 3.4.1 PI: 5.1.1, 5.1.2, 5.2.2 PI:9.1.2, 9.2.1, 9.2.2 PI: 10.1, 10.1.2,10.2.2, 10.3.1,10.3.2
4	Compare different logic families and articulate their characteristics.	PI: 1.3.1, 1.4.1 PI: 2.1.1, 2.2.4 PI:9.1.2, 9.2.1, 9.2.2 PI: 10.1, 10.1.2,10.2.2, 10.3.1,10.3.2
5	Analyze and design sequential logic circuits using electronics engineering concepts, articulate given problem and apply engineering concepts to generate diverse set of alternative solutions to state machine design.	PI: 1.1.1, 1.3.1, 1.4.1 PI: 2.1.1, 2.2.4, 2.4.3 PI: 3.1.5, 3.4.1 PI:9.1.2, 9.2.1, 9.2.2 PI: 10.1, 10.1.2,10.2.2, 10.3.1,10.3.2
6	Apply fundamental engineering concepts to design PLDs and compare	PI: 1.2.1, 1.3.1, 1.4.1

different types of semiconductor memories and articulate their	PI: 2.1.1, 2.2.1, 2.2.2, 2.2.4
characteristics	PI:9.1.2, 9.2.1, 9.2.2
	PI: 10.1, 10.1.2,10.2.2,
	10.3.1,10.3.2

Module No	Topics	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy	
	Number Systems and Codes		L 1, L2, L3	
1	Introduction to number system: Binary, Decimal, Octal arid Hexadecimal, Interconversions, Representation of negative numbers in binary system, Binary Arithmetic. Codes: Weighted & Non-weighted codes, 8-4-2-1 BCD code, Excess -3 code, Gray code, Error detecting and correcting code: Parity code, Hamming code, Alphanumeric codes.	4	1, 22, 23	
2	Boolean Algebra and Logic Gates			
	Boolean identities, Logic Gates and basic logic functions, Inverting and non-inverting buffers, standard forms of logic expressions, simplification of logic expressions using Karnaugh Map (up to 5 variables) and Quine- Me Clues key Methods with Don't Care conditions, Synthesis using AND- OR, NAND, NOR and XOR forms.	6	L 1, L2, L3	
3	Combinational Logic Circuits			
		10	L 1, L2, L3, L4	
	Adders, Subtractions, Multiplexers, De-multiplexers, Encoders, Decoders, Code Converters, BCD adder, Magnitude Comparators, Parallel Adder Implementation of Logic expressions using Multiplexers, DE multiplexers, Encoders and Decoders Delay calculation in combinational circuits Case study on VHDL(Implementation of combinational circuits)		,,,	
4	Logic families			
	Brief overview of Transistor as a switch Logic Families — ECL, DTL, RCL, TTL and CMOS Logic gate characteristics — propagation delay, speed, noise margin, fan- out and power dissipation; Standard TTL and CMOS logic gates.	4	L 1, L2	
5	Sequential logic circuits			
	Latches and Flip Flops (SR, D, JK, 7) with characteristic equations, Master - Slave and Edge triggered Flip-Flops; Direct Preset and Clear Inputs. Shift register - PIPO, SIPO, PISO, SISO, Bi-Directional Shift Registers; Universal Shift register, Applications of shift registers as Ring Counter and Johnson Counter Counters — synchronous, asynchronous, up, down, up/down. Finite State Machines — Analysis and design of Mealy and Moore Machines, State minimization/reduction techniques, State Assignment; Design of	5	L 1, L2, L3, L4	
	Sequence Generators and Sequence Detectors.			
5	Propagation delay, setup and hold time, critical path delay.			
5	Semiconductor Memories and Programmable Logic Devices			
	Semiconductor memories: ROM, SRAM, DRAM. PLDS: Combinational circuits using ROM, PLA and PAL	6	L 1, L2, L3	
	Total Hours	45		

Books and References:

Title	Authors	Publisher	Edition	Year
An Engineering Approach to Digital	W. Fletcher	PHI	Reprint of 1"	2021
Design			Edition	
Digital Logic and Computer	Morris Mario	Pearson	Reprint of 1"	2022
Design			Edition	
Digital Design Principles and Practices	Wakerly J.F.	Pearson India	5th Edition	2018
Digital System Design using	C.H. Roth	Thompson	3rd Edition	2018
VHDL		Publications		
Modern Digital Electronics	R.P. Jain	McGraw Hill	5th Edition	2022
	An Engineering Approach to Digital Design Digital Logic and Computer Design Digital Design Principles and Practices Digital System Design using VHDL	An Engineering Approach to Digital W. Fletcher Design Morris Mario Digital Logic and Computer Morris Mario Design Digital Design Digital Design Wakerly J.F. Digital System Design using C.H. Roth VHDL VHDL	An Engineering Approach to Digital W. Fletcher PHI Design Morris Mario Pearson Digital Logic and Computer Morris Mario Pearson Design Wakerly J.F. Pearson India Digital System Design using C.H. Roth Thompson VHDL Publications Publications	An Engineering Approach to Digital W. Fletcher PHI Reprint of 1" Design Digital Logic and Computer Morris Mario Pearson Reprint of 1" Design Morris Mario Pearson Reprint of 1" Edition Digital Design Morris Mario Pearson Reprint of 1" Edition Digital Design Principles and Practices Wakerly J.F. Pearson India 5th Edition Digital System Design using C.H. Roth Thompson 3rd Edition VHDL Publications Publications Publications

Online References:

S.No.	Website Name	URL	Modules Covered
1	Tutorials point	https://www.tutorialspoint.com/digital circuits/	Ml, M2, M3, M5
2	Swayam	https://swayam.Nov.in/nd1_noc19_ee51	MI-M5
3	Swayam	https://swayam.Nov.iWnd l_noc 19_cs74/	M 1-M6

Suggested List of Practical/ Experiments:

Practical Number	Type of Experiment	Practical/ Experiment Topic	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy
1	Basic	To Verify that NAND & NOR are Universal Gate	2	L 1, L2, L3
2	Experiments	To Study Conversion of Flip flop (a) JK to T (b) JK to D	2	L1,L2,L3
3		Design Half Adder & Full Adder using Logic Gates	2	L 1, L2, L3
4		To Implement Logic Expression Using Decoder IC 74138	2	L 1, L2, L3
5	Design Experiments	Design & Implement 4-bit synchronous counter using IC 74169	4	L 1, L2, L3
6		Design & Implement of 4-bit shift register (shift right) using IC 7495	2	L 1, L2, L3
7		To design a sequence Generator to Generate the sequence 2,3,1,0	4	L 1, L2, L3
8		To study and Implement Full adder using VHDL	4	L 1, L2, L3, L4
9	Advanced Experiments	To study and Implement Multiplexer using VHDL	4	LI, L2, L3, L4
10		Mini Project	4	LI, L2, L3, L4
		Total Hours	30	

S.E. Semester-III

Choice Based Credit Grading Scheme with Holistic Multidisciplinary Education (CBCGS-HME 2023)

B.E. (Electronics and Telecommunication En				ngineering) SEM: III							
Course Name: Digital Logic Design					(Course Code: PCC-ETC 302			
Contact Hours Per Week: 05								Credits: 4			
Teaching Scheme (Program Specific)					Examination Scheme (Formative / Summative)						
Modes o	of Teachin	ig / Learni	ng / Wei	ghtage	Mode	s of C	Continuo	us Assessment	t / Evaluation		
Hours Per Week								Practical Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact	Credits	ISE	IE	ESE	PR	TW		
			Hours							150	
		2	5	4	20	20	60	25	25		
ISE: In-S	Semester E	xaminatio	1 - Paper	Duration	1 - 1	Hours	5		1		
IE: Innov	vative Exa	mination									
ESE: En	d Semester	r Examinat	ion - Pape	r Duratio	on - 2 I	Hours					
The weig	ghtage of	marks for	continuo	us evalu	iation	of T	erm woi	rk/ Report: Fo	ormative (40%)	, 7imely	
completio	on of prac	tical (40%)	and Atte	ndance/I	Learnin	ıg Att	itude (20)%)			
Prerequis	site: Physi	cs and App	lied Math	nematics							
RBT: Re	evised Bloo	om's Taxo	nomy								

Course Objective:

The course intends to develop an understanding of number systems and codes and apply the same concepts for interconversions. The course also aims to develop an understanding of the analysis of logic processes and implementation of logical operations by applying combinational and sequential logic circuits.

Course Outcomes:

Upon completion of the course students will be able to:

Sr. No.	Course Outcomes	Performance Indicators
1	Apply mathematical techniques and knowledge to solve given problem related to number system and code interconversion and explain various types of codes	L1, L2, L3
2	Apply fundamental engineering concepts to simplify Boolean expressions and design using logic gates.	L1, L2, L3
3	Analyze and design combinational circuits using electronics engineering concepts, articulate given problem and apply modern engineering tool to implement combinational circuits.	L1, L2, L3, L4
4	Compare different logic families and articulate their characteristics.	L1, L2
5	Analyze and design sequential logic circuits using electronics engineering concepts, articulate given problem and apply engineering concepts to generate diverse set of alternative solutions to state machine design.	L1, L2, L3, L4
6	Apply fundamental engineering concepts to design PLDs and compare different types of semiconductor memories and articulate their characteristics	L1, L2, L3

Module No	Topics	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy
	Number Systems and Codes		L1, L2, L3
1	Introduction to number system: Binary, Decimal, Octal arid Hexadecimal,	4]]
	Interconversions, Representation of negative numbers in binary system,		
	Binary Arithmetic.		
	Codes: Weighted & Non-weighted codes, 8-4-2-1 BCD code, Excess -3 code,		

TCET

DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 4th Cycle Accreditation w.e.f. 1st July 2022) Choice Based Credit Grading System (CBCGS) Under TCET Autonomy

ice

E ENGINEERS

	Gray code, Error detecting and correcting code: Parity code, Hamming code, Alphanumeric codes.		
2	Boolean Algebra and Logic Gates		
	Boolean identities, Logic Gates and basic logic functions, Inverting and non-inverting buffers, standard forms of logic expressions, simplification of logic expressions using Karnaugh Map (up to 5 variables) and Quine- Me Clues key Methods with Don't Care conditions, Synthesis using AND- OR, NAND, NOR and XOR forms.	6	L 1, L2, L3
3	Combinational Logic Circuits	10	
			L1, L2, L3, L4
	Adders, Subtractions, Multiplexers, De-multiplexers, Encoders, Decoders, Code Converters, BCD adder, Magnitude Comparators, Parallel Adder Implementation of Logic expressions using Multiplexers, DE multiplexers, Encoders and Decoders Delay calculation in combinational circuits Case study on VHDL (Implementation of combinational circuits)		
4	Logic families		
	Brief overview of Transistor as a switch	4	L 1, L2
	Logic Families — ECL, DTL, RCL, TTL and CMOS		
	Logic gate characteristics — propagation delay, speed, noise margin, fan- out		
5	and power dissipation; Standard TTL and CMOS logic gates.		
5	Sequential logic circuits		
	Latches and Flip Flops (SR, D, JK, 7) with characteristic equations, Master - Slave and Edge triggered Flip-Flops; Direct Preset and Clear Inputs. Shift register - PIPO, SIPO, PISO, SISO, Bi-Directional Shift Registers; Universal Shift register, Applications of shift registers as Ring Counter and		L 1, L2, L3, L4
	Johnson Counter Counters — synchronous, asynchronous, up, down, up/down.		
	Finite State Machines — Analysis and design of Mealy and Moore Machines, State minimization/reduction techniques, State Assignment; Design of		
	Sequence Generators and Sequence Detectors.		
	Propagation delay, setup and hold time, critical path delay.		
	Semiconductor Memories and Programmable Logic Devices		
	Semiconductor memories: ROM, SRAM, DRAM.		
	PLDS: Combinational circuits using ROM, PLA and PAL	6	L 1, L2, L3
	Total Hours	45	

Books and References:

Sr. No.	Title	Authors	Publisher	Edition	Year
1	An Engineering Approach to Digital Design	W. Fletcher	РНІ	Reprint of 1" Edition	2021
2	Digital Logic and Computer Design	Morris Mario	Pearson	Reprint of 1" Edition	2022
3	Digital Design Principles and Practices	Wakerly J.F.	Pearson India	5th Edition	2018
4	Digital System Design using VHDL	C.H. Roth	Thompson Publications	3rd Edition	2018
5	Modern Digital Electronics	R.P. Jain	McGraw Hill	5th Edition	2022

Online References:

S.No.	Website Name	URL	Modules Covered
1	Tutorials point	https://www.tutorialspoint.com/digital	Ml, M2, M3, M5
		circuits/	
2	Swayam	https://swayam.Nov.in/nd1_noc19_ee51	MI-M5
3	Swayam	https://swayam.Nov.iWnd l_noc 19_cs74/	M 1-M6

List of Practicals/Experiments:

Practical Number	Type of Experiment	Practical/ Experiment Topic	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy
1	Basic	To Verify that NAND & NOR are Universal Gate	2	L 1, L2, L3
2	Experiments	To Study Conversion of Flip flop (a) JK to T (b) JK to D	2	L1,L2,L3
3		Design Half Adder & Full Adder using Logic Gates	2	L 1, L2, L3
4	Design Experiments	To Implement Logic Expression Using Decoder IC 74138	2	L 1, L2, L3
5		Design & Implement 4-bit synchronous counter using IC 74169	4	L 1, L2, L3
6		Design & Implement of 4-bit shift register (shift right) using IC 7495	2	L 1, L2, L3
7		To design a sequence Generator to Generate the sequence 2,3,1,0	4	L 1, L2, L3
8	Advanced Experiments	To study and Implement Full adder using VHDL	4	L 1, L2, L3, L4
9		To study and Implement Multiplexer using VHDL	4	LI, L2, L3, L4
10		Mini Project	4	LI, L2, L3, L4
		Total Hours	30	

